
LECTURE 5: THE BLOCH-KATO TAMAGAWA NUMBER

CONJECTURE

So far we have formulated the Beilinson conjectures, and seen that they hold in
the case of number �elds. We haven't discussed any higher dimensional examples.
My intention for this �nal lecture had been to look at Bloch's calculation for
K2(E) where E is a CM elliptic curve over Q. However, a member of the audience
requested that I talk a bit about the Tamagawa number conjecture of Bloch-Kato.
It is Christmas, so I will. But �rst, for completeness, let me at least write down an
incomplete list of cases where the Beilinson conjectures are known. I shall use the
phrase �weak conjecture� to mean the statement of BC1 (resp. BC2, resp. BC3)

with Hi
M/Z(X,Q(m)) (resp. H2j−1

M/Z(X,Q(j)) ⊕ N j−1(X)Q, resp. CHj
Z(X)0 ⊗ Q)

replaced by a suitable Q-subspace.

(1) Number �elds in full generality (Borel).
(2) The weak conjecture for L(H1(E), s) at s = 2 for CM elliptic curves over Q

(Bloch, Beilinson). This was generalised to all s ≥ 2 for CM elliptic curves
over Q, or for all elliptic curves over a number �eld F with CM by the ring
of integers of an imaginary quadratic �eld K such that K ⊃ F , and such
that F (Etors) is an abelian extension of K (Deninger).

(3) The weak conjecture for L(H1(C), s) at s ≥ 2 for S a Shimura curve over
Q (Ramakrishnan).

(4) The weak conjecture for L(H1(C), s) at s ≥ 2 for C a compact modular
curve over Q (Beilinson, Schappacher-Scholl).

(5) The weak conjecture for L(H2(C1 × C2), s) at s = 2 for C1, C2 modular
curves over Q (Beilinson).

(6) A weaker form than the weak conjecture for L(H2(X), s) at s = 2 for X
the compacti�cation of a Hilbert-Blumenthal surface over a real quadratic
�eld (Ramakrishnan)

(7) The full conjecture for L(H1(E), s) at s = 1 (i.e. BSD) is known for
elliptic curves E overQ with ords=1L(H

1(E), s) ∈ {0, 1} (Kolyvagin, Gross-
Zagier).

(8) Some numerical veri�cations for speci�c curves and surfaces.

The list should be interpreted as telling you that very little is known beyond dimen-
sion 0 (remember how many conjectures we need before we can even start talking
about the Beilinson conjectures!).

1. The Tamagawa number conjecture

This lecture will have to assume a bit more background than the previous ones.
In particular, I assume that the students have some familiarity with a little p-adic
Hodge theory. I won't talk about motives but be assured that there is a cohesive
and compelling motivic picture underlying everything I am about to say. Also, one
should talk about motives to treat e.g. modular forms.
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1.1. Notation. Let K be a �nite extension of Qp. Let ℓ be a prime and let
V be a �nite dimensional Qℓ-vector space with a continuous action of GK :=
Gal(K/K). De�ne the following subsets of the continuous Galois cohomology group
H1(K,V ) := H1

cont(GK , V ) as follows:

H1
g (K,V ) :=

{
ker(H1(K,V ) if ℓ ̸= p
ker(H1(K,V ) → H1(K,BdR ⊗ V ) if ℓ = p

and

H1
f (K,V ) :=

{
ker(H1(K,V ) → H1(Knr, V ) if ℓ ̸= p
ker(H1(K,V ) → H1(K,Bcris ⊗ V ) if ℓ = p .

Then
H1

f (K,V ) ⊆ H1
g (K,V ) ⊆ H1(K,V ) .

For a free Zℓ-module of �nite rank with a continuous GK-action we de�ne

H1
∗ (K,T ) := i−1(H1

∗ (K,T ⊗Q)), ∗ ∈ {f, g}
where i : H1(K,T ) → H1(K,T ⊗Q) is the map induces by T ↪→ T ⊗Q.

For a free Ẑ-module T of �nite rank with a continuous GK-action de�ne

H1
∗ (K,T ) :=

∏
ℓ

H1
∗ (K,T ⊗Ẑ Zℓ), ∗ ∈ {f, g} .

Now let F be a number �eld. For a place v of F , write Fv for the completion
of F at v. For a �nite dimensional Qℓ-vector space with a continuous GK-action,
write

H1
f (F, V ) := {x ∈ H1(F, V ) |xv ∈ H1

f (Fv, V ) for all �nite places v of F}
and

H1
g (F, V ) := {x ∈ H1(F, V ) |xv ∈ H1

g (Fv, V ) for all �nite places v of F

and xv ∈ H1
f (Fv, V ) for all but �nitely many v}

(where we view Gal(F v/Fv) ⊂ Gal(F/F )). We de�ne H1
∗ (F, T ) in a similar way

for T a free Λ-module of �nite rank for Λ ∈ {Zℓ, Ẑ,Af} (where Af = Ẑ⊗Q is the
ring of �nite adèles over Q).

1.2. The conjecture. LetX be a smooth projective variety overQ (for simplicity).
Fix integers m, r ≥ 0 such that m ≤ 2r − 1. Let

V := Hm
sing(X(C),Q(r)) .

Then V ⊗ Af
∼= Hm

ét (XQ,Af (r)) is endowed with a continuous GQ-action. Let

D := Hm
dR(X/Q) .

endowed with the �ltration D• given by Di := Fili+rHm
dR(X/Q), i ∈ Z (i.e. the

Hodge �ltration shifted by r). There is an isomorphism of R-vector spaces

D ⊗ R ∼−→ (V ⊗ C)+

and for each prime p there is an isomorphism of Qp-vector spaces

D ⊗Qp
∼−→ (BdR ⊗Qp V )GQp

as Galois modules with a �ltration (where the right hand side has the �ltration
coming from BdR). The integer w := m− 2r is called the �weight�.

Set Q∞ := R. For p ∈ {2, 3, 5, 7, 11, . . . ,∞} I shall sometimes write Vp, Dp etc
for V ⊗Qp, D ⊗Qp etc.
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Let

Φ :=

{
Hm+1

M (X,Q(r)) if m ̸= 2r − 1 (i.e. if w ̸= −1)
CHr(X)0 ⊗Q if m = 2r − 1 (i.e. if w = −1) .

Let Φ/Z ⊆ Φ denote the subspace of integral elements.
One should think of the Beilinson conjectures as being about the archimedean

prime∞, and the Bloch-Kato conjectures as incorporating the �nite prime numbers
p too. Indeed, the �rst part of the Beilinson conjectures says that the Beilinson
regulator rB induces an isomorphism

(1.2.1) rB ⊗ 1 : Φ/Z ⊗ R ∼−→ Hm+1
D (XR,R(r)) .

for w ≤ −3 (and something similar when w = −2,−1). Let p be a prime number.
Then a similar argument (due to Soulé, I think) as in Lecture 2 can be used to
construct a map

Hm+1
M (X,Q(r)) → Hm+1

ét (X,Qp(r)) .

The Leray spectral sequence

Es,t
2 = Hs(Q, Ht

ét(XQ,Qp(r))) ⇒ Hs+t
ét (X,Qp(r))

degenerates at E2, and the Weil conjectures (proved by Deligne) imply that E0,t
2 = 0

for t ̸= 2r. For r ̸= m+1
2 we get a map

Hm+1
ét (X,Qp(r)) → H1(Q, Hm

ét (XQ,Qp(r))) .

The p-adic regulator is the composition

rp : Hm+1
M (X,Q(r)) → Hm+1

ét (X,Qp(r)) → H1(Q, Hm
ét (XQ,Qp(r))) .

By work of Neková°-Nizioª, the image of rp is contained in H1
g (Q, Hm

ét (XQ,Qp(r))).

The �rst part of the Bloch-Kato conjecture (independently conjectured by Jannsen)
is the analogue (1.2.1) for �nite primes:

Conjecture 1.3. (1) The p-adic regulators induce an isomorphism∏
p

rp ⊗ 1 : Φ⊗ Af
∼−→ H1

g (Q, V ⊗ Af ) .

(2) For each open set U ⊆ SpecZ there exists a Q-subspace ΦU ⊂ Ψ such that

ΦU ⊗ Af
∼−→ {x ∈ H1

g (Q, V ⊗ Af ) |xv ∈ H1
f (Q, V ⊗ Af ) if v ∈ U}

under the isomorphism in (1).
(3) If m ̸= 2r − 1 and X has a proper regular model X over U , then

ΦU = im(Hm+1
M (X ,Q(r)) → Ψ) .

If m = 2r − 1 then ΦU = Ψ.

Remark 1.4. Note that in the case U = SpecZ, we should have ΦSpecZ = Φ/Z.
Then the conjecture asserts that∏

p

rp ⊗ 1 : Φ/Z ⊗ Af
∼−→ H1

f (Q, V ⊗ Af ) .

From this and other good reasons, one should think of H1
f (Q, V ⊗Qp) as being the

analogue of Hm+1
D (XR,R(r)) for a �nite prime p < ∞.
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Example 1.5. Consider the case r = m = 1. Then

Φ = CH1(X)0 ⊗Q = B(Q)⊗Q

where B = Pic0X/Q is the Picard variety of X. For p < ∞, the p-adic regulator rp
in the m = r = 1 case is just the map coming from the Kummer sequence. Then

B(Q)⊗ Af ↪→ H1
g (Q, V ⊗ Af ) ∼= H1

g (Q, H1
ét(BQ,Af (1)))

is an isomorphism if and only if |X(B){p}| < ∞ for all p < ∞.

Remark 1.6. It is also very interesting to study the p-adic regulator with torsion
coe�cients. For example, understanding the image of H3

M/Z(X,Z(2)) ⊗ Qp/Zp

under rp plays an important role in trying to establish �niteness of CH2(X){p}.

Now that the the p-adic regulators and the Beilinson regulator have been put
on an equal footing, we want to go beyond and look at the the residue of the L-
function. Oversimplifying the idea of Bloch-Kato, one might say that they take
inspiration from (among other places) the Birch and Swinnerton-Dyer conjecture,
where a precise formula for the residue is predicted. Oversimplifying even further,
one might say that the immediate problem you face is that the terms in the BSD
formula use that abelian varieties are groups (e.g. the term A(Q)tors shows up). At
least part of the idea is to de�ne groups for X which are analogous to things like
A(Qp) and A(Q). That is what we shall do now.

Let M := Hm
sing(X(C),Z(r))/torsion. Then M is a Z-lattice M in V such that

M ⊗ Ẑ ⊂ V ⊗ Af is stable under the action of GQ. De�ne

A(Qp) :=

{
H1

f (Qp,M ⊗ Ẑ) if p < ∞
((D ⊗ C)/(D0 ⊗ C+M))+ if p = ∞

(where the inclusion M ⊂ D ⊗ C is via D ⊗ C ≃ V ⊗ C). Then A(Qp) is compact
(wrt the natural topology) for p < ∞ and A(R) is locally compact. Under our
hypotheses, the Bloch-Kato exponential at p is an isomorphism

exp : Dp/D
0
p

∼−→ H1
f (Q, Vp)

for all p < ∞. It turns out that these de�ne a local isomorphism of topological
groups:

exp : Dp/D
0
p 99K A(Qp) .

For p = ∞ we just take the obvious map D∞/D0
∞ → A(R).

Fix a basis ω of det(D/D0) ≃ Q. Then ω induces a basis of det(Dp/D
0
p) ≃ Qp

and a Haar measure on each Dp/D
0
p for each p ≤ ∞, and hence a Haar measure

µp,ω on A(Qp for each p ≤ ∞ via the exp maps. It turns out that for S =
{bad reduction primes}∪{∞}, the �size� µp,ω(A(Qp)) of A(Qp) for p /∈ S turns out
to be Pp(H

i(X), 1), and in particular the product∏
p/∈S

µp,ω(A(Qp))

converges if w ≤ −3 (the region of absolute convergence of the L-function), so the
product measure µ :=

∏
p≤∞ µp,ω on

∏
p≤∞ A(Qp) is well-de�ned. By the product

formula, µ does not depend on the choice of ω.
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Remark 1.7. Notice that the condition w ≤ −3 corresponds to the BC1 setting,
i.e. the region of absolute convergence for the L-function. We saw that this is
the �easiest� setting. For weights w = −2,−1 one can de�ne a measure µ on∏

p≤∞ A(Qp) but it is a little more involved. From here on I will only look at the
w ≤ −3 case for simplicity.

Suppose that there exists a �nite dimensional Q-vector space Ψ with an isomor-
phism of R-vector spaces

r∞ : Ψ⊗ R ∼−→ D∞/(D0
∞ + V +

∞)

and an isomorphism of Af -modules

rGal : Ψ⊗ Af
∼−→ H1

f (Q, V ⊗ Af ) .

Remark 1.8. BC1 says that we should be able to take Ψ = Φ/Z and r∞ = rB. Then
the isomorphism rGal is supposed to be the conjectured isomorphism

∏
p<∞ rp ⊗ 1

in Conjecture 1.3.

Let A(Q) be the inverse image of rGal(Ψ) in H1
f (Q,M ⊗ Ẑ). Then A(Q) is a

�nitely generated abelian group and there are the obvious maps A(Q) → A(Qp) for
p ≤ ∞. Then the Tamagawa number is de�ned to be

Tam(M) := µ


∏
p≤∞

A(Qp)

A(Q)

 .

Also de�ne

X(M) := ker

H1(Q,M ⊗Q/Z)
A(Q)⊗Q/Z

→
⊕
p≤∞

H1(Qp,M ⊗Q/Z)
A(Qp)⊗Q/Z

 .

Then the Bloch-Kato Tamagawa number conjecture asserts the following:

Conjecture 1.9. With the above notation (and still supposing w ≤ −3):

(1) |X(M)| < ∞.
(2)

Tam(M) =
|H0(Q,M∗ ⊗Q/Z(1))|

|X(M)|
M∗ := Hom(M,Z).

Using that for p /∈ S = {bad reduction primes} ∪ {∞}, we have µp,ω(A(Qp)) =
Pp(H

i(X), 1), we may rewrite the second part of the conjecture in the equivalent
form that

LS(V, 0) =
|X(M)|

|H0(Q,M∗ ⊗Q/Z(1))|
· µ∞,ω(A(R)/A(Q)) ·

∏
p∈S\{∞}

µp,ω(A(Qp)) .

where

LS(V, s) :=
∏
p/∈S

Pp(V, p
−s)−1

is the L-function of Hm(X)(r) where we ignore the Euler factors at primes of bad
reduction.
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In particular, the Bloch-Kato Tamagawa number conjecture pins down the non-
zero rational multiple in Beilinson's conjecture (but assumes a Beilinson conjecture
statement as input). There is a conjecture for the near-central (w = −2) and central
(w = −1) point too, but just like BC2 and BC3 they are a bit trickier to formulate.
But, for example, the conjecture for X = A an abelian variety and m = r = 1 is
the same as the Birch and Swinnerton-Dyer conjecture.

1.10. Example: The Reimann zeta function. Let us look at the �rst possible
example: Consider the case X = SpecQ, m = 0, r ≥ 2 even (the calculation below
breaks down into two cases: r even or r odd. For space reasons I choose to present
only one case, and I choose the even one because it is easier!). Take ω = 1 ∈
Q = H0

dR(SpecQ) for the basis. For p < ∞ we have A(Qp) := H1
f (Qp, Ẑ(r)) =

H1(Qp, Ẑ(r)) (by a p-adic Hodge theory calculation that I omit). Then Bloch-Kato
compute that

µp,1(A(Qp)) = |(r − 1)|p(1− p−r)|H0(Q,Qp/Zp(1− r))|
and hence

µp

(∏
p<∞

A(Qp)

)
:=

∏
p<∞

(µp,1(A(Qp))) =
|H0(Q,Q/Z(1− r))|

(r − 1)!ζ(r)
.

If r is even then A(R) = R/(2π)rZ so

Tam(Z(r)) =
µp

(∏
p≤∞ A(Qp)

)
|A(Q)|

=
|H0(Q,Q/Z(1− r))| · (2π)r

|H0(Q,Q/Z(r))| · (r − 1)! · ζ(r)

= ±|H0(Q,Q/Z(1− r))|
|H0(Q,Q/Z(r))|

· 2

ζ(1− r)
.

One can check (using Tate duality) that for p ̸= 2 (and r even) we have

X(Z(r)){p} ∼= H1(Z[1/p],Qp/Zp(r)).

Therefore, up to a power of 2, the Tamagawa number conjecture for X = SpecQ,
m = 0, r ≥ 2 even is equivalent to the statement that

ζ(1− r) = ±
∏
p<∞

|H1(Z[1/p],Qp/Zp(r))|
|H0(Z[1/p],Qp/Zp(r))|

for r even. But this equality was proved by Mazur-Wiles as a consequence of their
proof of the Iwasawa main conjecture for Q.


